(资料图片)
1、sin(-α)= -sinα;cos(-α) = cosα;sin(π/2-α)= cosα;cos(π/2-α) =sinα;sin(π/2+α) = cosα;cos(π/2+α)= -sinα;sin(π-α) =sinα;cos(π-α) = -cosα;sin(π+α)= -sinα;cos(π+α) =-cosα;tanA= sinA/cosA;tan(π/2+α)=-cotα;tan(π/2-α)=cotα;tan(π-α)=-tanα;tan(π+α)=tanα扩展资料:诱导公式口诀“奇变偶不变,符号看象限”意义:k×π/2±a(k∈z)的三角函数值。
2、(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
3、记忆方法一:奇变偶不变,符号看象限:记忆方法二:无论α是多大的角,都将α看成锐角。
4、以诱导公式二为例:若将α看成锐角(终边在第一象限),则π+α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二。
5、以诱导公式四为例:若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四.诱导公式的应用:运用诱导公式转化三角函数的一般步骤:特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。
6、参考资料:百度百科-三角函数公式。
本文分享完毕,希望对大家有所帮助。
标签:
Copyright © 2015-2022 南方消费网版权所有 备案号:粤ICP备18023326号-21 联系邮箱:855 729 8@qq.com